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ABSTRACT (UNCLASSIFIED)

The Brain-State-in-a-Box (BSB) neural network is an auto-associative network. It is able to

associate vectors with other vectors. Auto-association results in a system that has been learned

to respond strongly to each input vector of a certain set of input vectors by returning this same

vector multiplied by its recollection strength, where vectors are bounded by the box. This gives

the possibility for convergence to one vector of the learned set of vectors if the actual input vector

is not known to the system. When radar signals are translated into vectors, the BSB network can

be used for radar pulse classification. The whole process of classification together with the

relation with other non-neural algorithms is shown. , - , _',,_-

7''

4r/ 'f~~ I '  '' _

'\ L.:: 1  W l. tv Codes

Ds



TNO repvot

Page
2

rapport no. FEL-90-BO23
titel BSB Radar pulse classifiation

auteurs P.P. Meiler, A.M. van Wezenbeek
instituut Fysisch en Elektronisch Laboratorium TNO

datum Augustus 1990
no. in iwp'90 708

SAMENVATTING (ONGERUBRICEERD)

Het Brain-State-in-a-Box (BSB) neurale netwerk is een auto-associatief netwerk. Het associeer
vectaren met vectoren. De auto-assaciatie zorgt ervoor dat een systeem wardt apgebouwd dat
geleerd is am sterk te reageren op een verzameling van invoer vectoren. Dit gebeuri daor bil
invoer van een vector uit deze verzameling ais uftvoer eenzeffde vector te genereren,
vermenigvuidigd met een waarde die overeenkomrt met de hevigheid van de reactie. waarbij de
vector gedwongen wordt binnen de box te blijven. Dit biedt de mogelijkheid van convergentie naar
66n van de geleerde vectoren, oak als de actuele invoer vector niet bekend is aan het systeem.
Wanneer nu radar signalen naar vectoren worden vertaald, kan het BSB netwerk gebruikt warden
voor radar puts classificatie. Het gehele classificatie process en de relatie met andere, niet-
neurale, algoritmen wordt beschreven.
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INT9ODUCTION

From the period of 1-12-1988 to 30-6-1989 the author has been involved with the study and

implementation of the Brain-State-in-a-Box (BSB) neural network. This report presents both the
theoretical issues and the results of practical experiments done in this period. The reader should

be familiar with the basics of neural computing (see [D.E. Rumelhart, J.L. McClelland 19871 for an

introduction).

Anderson showed on the conference of the INNS in Boston, 1988 that the BSB network can be

used for radar signal categorisation [J.A. Anderson 19881. This has been the direct motive for
TNO to investigate its possibilities. Related articles can be found in: [J.A. Anderson 1977], [J.A.
Anderson 1983], [J.A. Anderson, M.C. Mozer 1981], [J.A. Anderson, G.E. Hinton 1981].

Chapter 2 starts with a general introduction in descent techniques, of which the BSB network in

fact implements the most simple one. This is shown in chapter 3. In chapter 4 it is shown how the
BSB network can be used for the classification of clusters. Conclusions are given in chapter 5.
Two appendices are included. Appendix A discusses those topics from linear algebra used in this
report. Appendix B contains the documentation of C-sources used for the implementation of the

BSB network.
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2 DESCENT TECHNIQUES

This chapter contains a summary of descent techniques. All derivations can be found in

[S.L.S. Jacoby, J.S. Kowalik, J.T. Pizzo 19721 or [H.W. Sorenson 1980). Descent techniques

consist of three parts. Given an initial vector xk pointing in N-dimensional space (having

N elements), a descent direction sk (with Isk I11) must be found, which is a vector pointing

towards a direction evaluating to a lower value of an objective function E. This can also be

interpreted as finding a point with less energy. Second, a descent step length - must be found,

indicating the length of the step taken in the direction determined by the sk vector. Finally the

descent step must be made according to formula 2.1 so that E(xk+l) < E(Xk).

Xk+1 = Xk+YkSk (2.1)

The vector sk is a descent direction it:

E (xk+'YSk) -E (xk)
1 im
" 0 Y

dE (Xk+YSk) (2.2)

dy

- SkTVE(xk) < 0

Notice that the product of descent direction and the gradient gives the directional derivative. The

condition for formula 2.2 to be negative implies that the descent direction must make an angle a

with the gradient, where x/2 < a < 3r12, and that the descent direction is therefore opposite to the

gradient.

The gradient descent techniques have in common that the first or second order derivative of the

objective function is used to find its minimum. For some applications it is impossible to determine

the gradient. The conjugate descent technique offers an algorithm which in principle avoids the

calculation of the gradient.

2.1 Gradient descent

For the gradient descent the locally steepest direction is chosen as descent direction. The

following derivation shows that the choice of locally steepest direction leeds to a descent direction

. ... ... . . .. -- -
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given by the multiplication of the inverse of a metric matrix and the gradient vector. First define

the distance d between x, and x2 :

d(xl,x 2 ) - ((xl1 x2 )TA(xlx 2 ))l/
2  

(2.3)

A is a positive definite (d>O, see appendix A) NxN symmetric metric matrix. So all points x at a

distance 8 from xk are on a N-dimensional ellipse (see section 3.1 for an explanation of the

ellipse).

82 = (X-xk)TA(x-xk) (2.4)

From a point xk we take a step Axk = kSk, so that the resulting vector is on the ellipse, and we

choose this Axk so that the associated energy E will be minimized:

min(E(xk+Axk) I(Axk)T AAxk = 82) (2.5)
x

We can approximate E(xk) with the first order Taylor series expansion about xk:

E(xk 4AXk) - E(xk)+(Axk)TVE(xk) (2.6)

To minimize E(xk+Axk), we now must minimize (Axk)TVE(xk) because E(xk) is fixed. So:

min[ (Axk)TVE(xk) I (Axk ) TAA x k - 82) (2.7)
x

One of the possibilities to find this minimum is to use the Lagrange function:

m
L(x,u) = Etx)-Y ujgj(x) (2.8)

j=1

In formula 2.8 u-(u1 u2 .. um)T is a vector of Lagrange multipliers corresponding to the

constrained minimization problem:

min(E(x) Igj(x) > 0, j = 1,2..m) (2.9)
x

The primal function Lp is defined as:

Lp(x) - max L(x,u) (2.10)
uNO

and the primal problem is the problem that we want to solve:

min Lp(x) min E(x) (2.11)
x x
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When, as in our case, the original problem is of the form min(E(x) igj(x) 0, j = 1..m), the solution

can be found by solving the classical saddle-point conditions:

VxL(xs,us ) = 0 (2.12)

VuL(XsU s) = 0

with L(xs,u) !5 L(x,u) 2. L(x,us) for all u>O and all x, defining the saddle-point (xs,us). So:

L(x,u) - (Axk)TVE(xk)-U((Axk)TAAXk 8
2 ) (2.13)

SL
- = VE(xk)-2uAAxk 0 (2.14)8X

8L
(,xk )TAAxk = 0 (2.15)au

giving: (formula 2.14 rewritten)

AXk - (u/2)A-1 VE(xk) (2.16)

Given the condition from formula 2.2 for descent directions, the direction of sk has been found:

Sk = -A-IVE(Xk)  (2.17)

2.1.1 First order

For the first order gradient descent for sk , given by formula 2.17, we choose A =I. This results in:

sk - -VE(xk) (2.18)

The choice for yk is done such that E(Xk)-E(Xk+l) will be maximized. Calculating the Taylor

expansion of E(x) about xk+l:

E(Xk+l) - E(xk+Yksk) (2.19)

- E (xk) +akSkTVE (xk) + (Tk
2
skTHess (xk) sk ) /2

. E (xk) --kVE (xk) TVE (xk) + (Tk
2
VE(xk)THess(xk)7E(xk) )/2

.. . . ........... ..................
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We require that:

dE(xk+l)-E(xk) 0 (2.20)

dy

VE (xk) TVE (xk) (2.21)

VE(Xk)THess(Xk)VE(Xk)

The first order gradient descent in fact generates directions that asymptotically converge to just

two directions. This has the consequence that the rate of convergence, particularly in the vicinity

of local minima, is very slow. As a result this method is generally regarded as exhibiting

unsatisfactory performance, especially in the vicinity of the local minimum 1

2.1.2 Second order

The second order gradient descent technique uses the Hessian matrix Hess(xk) as metric matrix,

so formula 2.17 gives:

Sk = -Hess(xk)-1V(xk) (2.22)

which results in descent directions provided Hess(x) is positive definite. If we assume a quadratic

cost function E - a+bTx+(xTAx)/2, then a necessary and sufficient condition for the minimum is

VE(x) = 0 (Hess(x) > 0), giving x = Alb 2. When =1 then:

X1 = x 0 -Hess(x 0)-VE(x0 )

= x0 -A-1(b+Ax0 ) (2.23)

= -A-lb

and thus the minimum can be found in one step. A clear disadvantage of this method is the

calculation of the Hessian matrix and its inverse.

2.2 Conjugate descent

Two vectors x, and x2 are said to be mutually conjugate with respect to a symmetric positive

definite matrix A, if x1TAx2 = 0. In section 2.1 (formula 2.22) it was necessary to calculate the

1 Only when the minimum corresponds to a hole in the energy surface.

2 This also shows that the problem of solving linear equations Is equivalent to the problem
of minimizing a quadratic function.
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inverse of the Hessian. The conjugate methods are based upon the fact that the inverse of a

matrix A can be found by using n mutually conjugate vectors:

A =l - T1 (2.24)
i=1 TX

This is proven by showing that AA"1 
= 1.

2.2.1 Directional

This method uses a set of descent directions, and uses this set to minimize the objective function

without calculating a derivative. Initially they are chosen linearly independent. For e3ch descent

direction the optimal "k is found by minimizing E(Xk+yksk). After the last descent step from the set

has been computed and taken, one mutually conjugate vector is computed and is added to the

set of descent directions, while the first direction is deleted from the set. So after n times updating

the set, the set will consist of n mutually conjugate directions.

2.2.2 Gradient

The conjugate gradient technique uses the gradient for iteratively finding the set of mutually

conjugate vectors.
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3 BSB NEURAL NETWORK

In this chapter the various properties of the BSB recall formula are shown. This recall formula is

defined as follows: (where (Xmin,Xmax), with (Xmin < Xmax), is the vector element space for the

bounding hypercube)

Xk+1 = S(xk+yWxk) (Y > 0) (3.1)

Xmax x > xmax
S(x) = X Xmi n :S x < Xma x  (3.2)

1 Xmi n  x < Xmi n

The energy function is defined by:

E(x) = -(xTwx)/2 (3.3)

E(x) is fixed by the learning rule and forms an n-dimensional ellipse. Furthermore, each new

vector xk+1 represents a point on the energy surface which has less energy than vector xk. This

new vector is found by adding a vector Ax=Wx, which always is orthogonal to the energy surface,

to the old vector. Finally it is shown that when the Hebbian learning rule is used, the resulting

weight matrix is positive semi-definite.

3.1 Energy curves

When diagonalizing the weight matrix W used in the energy function E, it is easy to show that E

forms an ellipse. Look at the isoclinals of E, which are a set of points x all having the same

energy cI :

E(x) = C1

-(xTwx) /2 = c1

xTwx = c2
XTSAS-lx = C2  (3.4)

XTQAQTx = c2

yTAy - c2
1lYl2 +X2Y2

2 +..+)Yn 2 - C

yJ1/(i/,ql )2+Y2 2/ (i/qX2 )2+..+yn2/(I/')-2 C
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Each E(x)=c1 forms a N dimensional ellipse. The length of the i axis is 24c / IXi. Also each axis

points towards eigenvector xi. When W is positive semi-definite E(x) has its maximum at VE(x)=O,

or E(x)=O for x=O. Notice that this is a reversed energy function from the ones studied in

chapter 2. This also implies that the minima of E are on an ellipse 1 which is most far away from

x=O, and therefore passes through the endpoints of the hypercube formed by formula 3.2. Now

we can understand why the BSB model works. During learning vectors are used which represent

the endpoints of the hypercube. These vectors are becoming elgenvectors 2 of the weightmatrix.

During recall these eigenvectors determine the form of the ellipses, which therefore are directed

towards the minima of the energy function.

3.2 BSB implements first order gradient descent minimizing energy

The following proof comes from [R.M. Golden 1986]. It shows that the energy associated with

xk+1 is less than the energy associated with xk. This implies that subsequent invocations will end

up in a vector which has in its local environment minimal energy. Because during learning these

minima are associated with prototypes, we may expect to converge to the same prototypes when

we start within an environment of each prototype. The gradient of E can be calculated (see

appendix A), and denoted as gk:

VE(xk) = gk = *Wxk (3.5)

and so, according to formula 2.18 with sk = WXk, the BSB recall formula implements a first order

gradient descent. We want to investigate the difference of energy A between two vectors, and use

a difference vector dk:

dk = Xk+l-xk (3.6)

A -
2E(Xk+l)- 2 E(xk) (3.7)

1 So the minimum does not form a hole. Instead the maximum forms a hill.

2 This depends on the learning rule. With Hebbian learning the learned vectors will only be
eigenvectors If they are olhogonal.
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The following derivation Shows that A<O, thereby proving that BSB tries to minimize energy

associated with vectors:

A =
2
Etxk+l)-2E(xkl

=2E (dk+Xk) -2E (xk)

=- (dk+xk )TW(dk+xk) +xkT Wyk

= -dk TWdk-dk TWxk-xk TWdk (3.8)

= -dk TWdk-2dk TWxk

= -d ~k2kT9

So A<0 if dT9k< (dk TWdk)/2

First look at d T 9. Introduce a function rLi,k) to be able to rew'~te formula 3. as a linear

combination of each vector element:

Consider the three regions for x from formula 3.2 and determine the range for a.(i,k). The first

region:

mn Xk (') -Yk(3) 5 xmax -> a (i, k) =1(3.10)

The second region:

xmaxxk (i) < i'Yk(' gk(i) < 0
xk(i) < xmax

>Xk+1(i) " max ' Xkti)-)it(i,k)gk(i) (3.11)

Cc(i, k) xmxxk=

)Ygk M

->0 :5 ct(i, k) < 1
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The third region:

xk(i)-Ygk(i) < Xmi n

Xmin-xkM)> -Ygki) gW(i) > 0
x k (i) > xmi n

xk+l(i) xmin - xk(i) -Y(i,k)gk(i) (3.12)

a(i,k) Xmin-xk(i)
-ygk (i)

-> 0 < (i,k) < 1

Combining the three regions for ci(i,k) leads to:

0 < a(i,k) < 1 (3.13)

Now determine dk(i) and the inproduct:

dk(i) = -Y(i,k)gk(i)

dkTgk = X(Ya(i,k)gk(i) 2 ) < 0 (3.14)

And look at (dkTWdk)/2:

),inlxi2  < xTwx _ maxl2
(Xmin I dk 12 )/2 5 (dkTWdk)/2 (3.15)

So, when Xmin > 0: dkTgk < (dkTWdk)/2. Else, when Xmin < 0, just calculate the condition for
which A < 0:

dkTgk < (dkTWdk)/2

- U '((ik)gk(i) 2 ) < (Xmin(-7a(i,k)gk(i)) 2 )/2 (3.16)

y < 2 (Ja (i, k)g9k M)2) / ( I i n  II ( NEi , k ) g9k ( i ) ) 2 )

with W(i,k) 2 S CL(i,k) (formula 3.13)

y< 2/1 in I

So either when W is positive semi-definte, or "y< 2/'I'minI, BSB will minimize an energy
function.
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3.3 Gradient vector orthogonal to energy field

Choose a vector a, with E(a)=c. Also place on E a curve f(t) = (xl(t),x2(t),..,xn(t)), so that for t=t 0

f(t0 )=a holds. This leads to the following equality:

E(f(t)) = c Vt

dE(x 1 (t),x 2 (t),..,x n (t)) 0 (3.17)

dt

VE(a)Tf
' (t o ) = 0

So the gradient vector in a is orthogonal to every derivative of I in a, and so must be orthogonal to

the curve E(x)=c through a (derivation from [J.H.J. Almering 19831).

3.4 Hebbian weightmatrix is positive semi-definite

We want to show that matrix W formed by Hebbian learning is positive semi-definite (?rnin 2! 0).

All that has to be done is to show that xTWx a 0 Vx (see appendix A):

w = X1xlT+x2x 2T+..+xnXn
T

x/Twxl = x T ( xl xT+x2
x2 T+" "+xnn T )% 

1

= XlT (X .. +xnTxlxn)
= x~x~x~~xx~+ ~(3.18)= XjxlTXlTxlI+x2 Txlx1 Tx2 +. .+Xn T XlT Xn

= (XlTx ) TxTxl+ (xlTx2 ) TxlTx2+ .+ (xlTxn) TxT xn

= IxiTxi12+*I xiT 12
2+..+Ix 1T x" 1

2 2 0
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4 BSB RADAR PULSE CLASSIFICATION

A radar receiver converts the received radar spectrum to a number of features or fields for each

detected radar. For example the frequency field, the level field and the bearing field. The fields

may be distorted with noise. We want two problems to be solved. First, a correct removal of noise,

and second, an indication of the number of radars in the neighbourhood.

The radar features are scalars (no dimensionality). A BSB network processes vectors. So a

transformation from scalars to vectors is necessary. Two transformations will be discussed. Also

results of experiments are presented and explained as much as is possible.

4.1 Translation

A translation translates (converts) a scalar to a vector and vice-versa. Two translation methods

will be discussed: thermometer coding and reflected binary coding.

4.1.1 Thermometer coding

A thermometer is formed by a vector. The indicator of the thermometer is a block of vector

elements which are ON (have a high value). All other elements are OFF (have a low value). When

the scalar has a low value, the indicator of the thermometer is set low (at the beginning, which is

the left side, of the vector). Gradually, as the scalar increases, the indicator is set higher (the

block of ON vector elements shifts from the beginning of the vector to the end of the vector).

Extremes of the scalar need a special treatment, because then the width of the indicator Should

decrease. A disadvantage of this thermometer coding is that it only uses n code vectors of the 2n

possible vectors in the 2n hypercube. A reason for choosing this code is that it provides a simple

manner to map scalars with slightly differing values to vectors which are close to each other on

the hypercube (the thermometer Indication of these vectors Is almost the same, and so their

hamming distance Is low, and so they have few differing axis values). The conversion formula, a

aiscussion on a choice for the thermometer width, and the choice for vector elements are

presented.
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4.1.1.1 Conversion formula

For conversion from scalar to vector the following formula is used: (with s scalar, Smax the

maximal field value, Smin the minimal field value, n the number of ON vector elements for that

field).

mid = ((s-smin)/(smax -smin))*n (4.1)

Test whether there is space at the vector beginning: (with onow correction number for a low

indication, w width of the block of ON elements and set to a constant value)

if (mid < w/2)
(4.2)

corrIow = (w/2)-mid

Test whether there is space at the vector end to add w/2 elements to mid: (with corrhigh

correction number for a high indication)

if (mid > n-w/2) (4.3)
corrhigh = mid+(w/2)-n

Now mid is used as index to the x vector, around mid a total of w values are set to Xmax , unless

mid is at a border: (with xmin the minimal value of a vector element, xmax the maximal value of a

vector element, fi the first index which must be set in the vector to Xmax)

fi = mid+corrlow-w/2

for (i = 0; i < fi; i++) x~i] - Xmin (4.

for (i = fi; i < fi+w-corrlow-corrhigh; i++) x(i] = Xmax

for (i = fi+w-corrlow-corrhigh; i < n; i++) x[i] - xmin
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As an example of a thermometer coding look at table 4.1.

0 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1.0
1 1 1 1-1 -1 -1 -1 -1 -1 -1 -1 1.5
2 -1 1 1 1 -1 -1 -1 -1 -1 -1 -1 2.5
3 -1 -1 1 1 1-1 -1 -1 -1 -1 -1 3.5
4 -1 -1 -1 1 1 1 -1 -1 -1 - -1 4.5
5 -1 -1 -1 -1 11 1 -1 -1 -1 -1 5.5
6 -1-1-1--111-1--1 6.5
7 -1 -1 -1 -1 -1 -1 1 1 1 -1 -1 7.5
8 -1-1 -1 -1-1--11 1 -1 8.5
9 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 9.5

10 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 10.0

Table 4.1 Thermometer coding with Smin 0 , Smaxl 1, Xmin-, Xmax-l, w=3. n=1 1. The
first column gives scalar input, the second column vector values, the last column
scalar output.

For the conversion from vector to scalar the following formula is used: (with val value of first

element of block of thermometer indication, w the number of ON vector elements the block

consists of, Smax the maximal field value, Smin the minimal field value, n the number of vector

elements for that field)

3 - Smin+(val+w/2 )*(smax-Smin)/n  (4.5)

4.1.1.2 Choice of thermometer width

The choice of thermometer width used with the thermometer coding has consequences for the

separation of vectors during recalling. If we use Hebbian learning, only orthogonal vectors can be

recalled correctly:

W - X1X1T+x2x2T+..+xlx1 T+. .+xnxn
T

WX1 - XlXlTX2 +x2x2 Txl+..+xIx1 Txl+. .+xnxnTX(
- xlTxlxl+x2 Txlx 2+. .+xl Txlxl+..+xnTx1 xn
- Ixlxl provided xiTxj - 0 if i * j

When vectors are formed according to the (-1,1) thermometer coding, they generally will not be

orlhogonal. This is not as bad as i may seem, because thanks to gradient descent recalling, non-

orthogonal vectors can be separated too. In fact the setting of w determines the level of

orthogonality between Input vectors. For example consider two vectors yl and y 2 consisting each

of two fields of 11 elements. Give both fields of yI a low thermometer coding and both fields of y 2

a high coding, and calculate the Inproduct of yljy 2 , varying the value of w:
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When w-1:

-l (-1 1 -1 -l-1-1 -1i-1-1-1 -1-1 1 -1-1 -1 -1i-1-1-1-1-)

Y2 = - - - - - - - - - - - - - - - - - - - -,)T

the inproduct yIT Y2 = 14.

When w=3:

Y1 - ( I 1 1 -1 -1 -1 -1 -1 -I 1 - 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1)
T

Y2 - (-1 -1 -1 -1 -1 -1 -1 -1 1- -1 -1 -1 - 1 1 )
T

the inproduct yiT Y2 = -2.

When w=4:

Y- " ( 1 1 1 1 -1 -1 -1 -1 -1 -1 -1- -1 -1 -1 -)
T

Y2 - (-1 -1 -1 -1 -1 -1 -1 1 1 1 1 -i--- -i 1 1 1 1)
T

the inproduct yT Y2 -10.

Varying w results in varying the level of orthogonality. When we demand that non-correlated

vectors are orthogonal, we can derive the optimal value of w:

Yl - (ll''lw -lw+i -InT

Y2 . (-11 " -in-w 1n-w+1 -- ln )T

ylTy2 - (-w)+(n-w+1-(w+1))+(-w) (4.7)

- n-4w

w - n/4

This choice of w leads to a maximum of only 4 orthogonal vectors, independent of n.

4.1.1.3 Choice for value of vector elements

In principle two codings are possible: (0,1) coding and (-1,1) coding. It is shown that the (0,1)

coding results in W matrices which are band matrices and so prevent some protolype recollection

(there is no information outside the bands), resulting in the choice for (-1,1) coding.
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Consider a vector y with thermometer width w=3 consisting of 10 elements (0,1) coded with a

block of ones starling at index 4, y - (0 0 0 1 11 0 0 0)T, and look at W:

0
0
0
1

W = 1 (0 0 0 1 1 1 0 0 0 )T
1
0
0
0

00000o000
0 0 0 0 0 0 0 0 000 0 1 1 1 0 00000111000
0 0001 11 00 0000111000

00000000000000 0000

By varying for different ys the value of the start of indication but keeping w=3, the block of ones

in W shifts across the diagonal, and so the next W results: (each x denotes a matrix element

which may have a value *0)

8XX0 0000
xxxxx 000
xxxxx 000 XX Xx0 00 00

W= 00xxxxx00O00xxxxx0
O0000xxxx
00000xxx

Now take a vector ys of n elements and width w: (with s the index of the first ON bit)

Ys = (01 "". 
0
s-.i Is''is+w-1 

03+w ("0)  4.8)

Matrix W is formed by summing ysYsT for 1 < s < n. Look at Wys (choose one 5). The most

extrme elemnts of the block (1s and 1s+w.1) can avae a sulok in Wys:

Wy s - (01 . .
0
s~,w 

1
s-w+1 .. s+2w-2 0s+2w_-1. 0n

IT ~ (4.9)

and Wys is always limited to a band of 3w-2.

4.1,2 Reflected binary coding

The thermometer code only uses n nodes of the 2n hypercube as possible code vectors. The

reflected binary code (also called Gray code) uses each node [A.P. Thijsen, H.A. Vink, C.H.
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Eversdik 1982). Also scalar values which differ slightly are translated into vectors which have a

low hamming distance.

Using the thermometer code, the hamming distance between two vectors, each representing a

scalar, increases linearly with the increase of the difference between the scalars. Using reflected

binary coding the hamming distance between two vectors representing two differing scalars can

also increase i the difference between the scalars Increases, but this does not happen linearly.

The distance between the vectors representing scalars 0 and 1, d(0,1) is 1, as can be seen in

table 4.2. It can also be seen that:

d(0,1) = d(0,3)
d(0,2) = d(0,4) (4.10)

d(0,2) > d(0,3)

4.1.2.1 Conversion formula

For conversion from scalar to vector the following formula is used: (with 0 <s < 2n scalar,

r intermediate number, x - Xn. 1 .. x0 vector)

r = s mod (2i ) (i = 2,3,..,n+i)

if ( r < 2i -2) xi 2 = xmin (4.11)

if (2i -2 < r < 2 i-2+ 2 i-1) xi_2 - 2max

if ( r > 2 i-2+ 2 i
-1) xi_ 2 - xmin

An example of Gray coding is shown in table 4.2.

0 -1 -1 -1 -1
1 -1 -1 -1 1
2 -1 -1 1 1
3 -1 -1 1 -1
4 -1 1 1 -1
5 -1 1 1 1
6 -1 1 -1 1
'7 -1 1 -1 -1

8 1 1 -1 -1
9 1 1 -1 1

10 1 1 1 1

Table 4.2 Gray coding with smin-0, Smax-1 1, min--1, xmax-1, n- 4 . The first column
gives scalar input (is scalar output), the second column gives vector values.
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For reverse conversion the following formula is used: (with x - Xn. 1 Xn.2 .. x0 the reflected binary

coded vector, Sn.1 Sn-2 .. s o the resulting binary coded vector, s the corresponding scalar)

Sn-l ' Xn_ 1

if (si+ 1 = xmax) (i = n-2,n-3,..,O)

if (xi = xmin) s i -Xmax

else si - xmin (4.12)

else si =x i

b(si) 1 if s' = xmax
0 if Si - xmin

s = b(snl)2n-l+b(Sn_2 )2n-
2+ .. +b(so)20

A few remarks on the learning algorithm which is used. When hebbian learning is used, the input

patterns should be almost orthogonal. This limits the network to n distinguishable vectors. When

delta leaming is used, every set of n linearly independent vectors can be used. So although the

2 n hypercube has 2n comers and though the reflected binary code uses each of them, only n of

them can actually be associated with a prototype with the standard BSB model. An extension

might be to develop a new BSB model with hidden units and back propagation learning process.

In fact only n-1 linearly independent vectors can be learned by an auto-associative system,

because it n vectors are learned so that Wxi - Xxi (i = 1,2, .. n), you have fully specified the set

of egenvectors, so the only solution is W = I (see also section 4.2.2).

4.1.2.2 Choice of value of vector elements

Again the (0,1) coding is not a good coding. With the reflected binary code not each vector has

the same amount of ON vector elements. When a vector with few ON vector elements is learned

and a vector with many ON vector elements, the first vector will get a smaller eigenvalue

(determined by the length of the input vector), and will therefore be learned much weaker.

4.2 Results of experiments

First a simple 2 dimensional BSB model is used to verify the theories developed. Then an

experiment Is done which tests the classification possibilities of the BSB network.
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4.2.1 2 dimensional BSB

In this section the experiment that Anderson published in [J.A. Anderson 1983] is repeated. The

purpose is to Study the recall field of a 2 dimensional BSB model. This field is a 2 dimensional

plane, bounded by xmin=-l and xMax1= of the vector elements. The weightmatrix is:

S 0 .0 3 5 -0 . 0 5 1
0.005 0.0351

In figure 4.1 this recall field is shown. In table 4.3 the number of steps needed for convergence is

given for each gridpoint. Because W>O, y can be chosen large to reduce the number of steps.

See table 4.4.

Figure 4.1 Recall field for a 2 dimensional BSB model. In each gridpoint the gradient is
drawn.

Figure 4.1 also shows the ellipses E(x)=c for different values of c (c=O, c-0.005, c=-O.01, .. ). The

gradient vectors indeed are orthogonal to these ellipses.
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0 4 9 14 20 28 39 58 118 74 52 39 31 24 18 14 10 6 3 0
4 4 9 14 20 28 39 57 116 75 52 39 31 24 18 24 10 6 3 3
9 9 8 14 20 28 39 57 I1 76 52 40 31 24 19 14 10 7 6 6

24 14 14 13 20 27 38 55 105 77 53 40 31 24 19 14 10 10 10 10
20 20 20 20 19 27 37 54 97 80 54 41 32 25 19 14 14 14 14 14
28 28 28 21 27 26 36 52 89 84 56 42 32 25 20 19 19 19 18 18
39 39 39 38 37 36 34 49 80 91 58 43 33 26 25 25 24 24 24 24
58 57 57 55 54 52 49 46 72 103 61 45 35 33 32 32 31 31 31 31

118 116 Ill 105 97 89 80 72 63 140 66 48 45 43 42 41 40 40 39 39
74 75 76 77 80 84 91 103 140 100 76 66 61 58 56 54 53 52 52 52
52 52 52 53 54 56 58 61 66 76 100 140 103 91 84 80 77 76 75 74
39 39 40 40 41 42 43 45 48 66 140 63 72 80 89 97 105 111 116 118
31 32 31 31 32 32 33 35 45 61 103 72 46 49 52 54 55 57 57 56
24 24 24 24 25 25 26 33 43 58 91 80 49 34 36 37 38 39 39 39
18 18 19 19 19 20 25 32 42 56 84 89 52 36 26 27 27 28 28 28
14 14 14 14 14 19 25 32 41 54 80 97 54 37 2' 19 20 20 20 20
10 10 10 10 14 19 24 31 40 53 77 105 55 38 27 20 13 14 24 14

6 6 7 10 14 19 24 31 40 52 76 Ill 57 39 28 20 14 a 9 9
3 3 6 10 14 18 24 31 39 52 75 116 57 39 28 20 14 9 4 4
0 3 6 10 14 18 24 31 39 52 74 118 58 39 28 20 14 9 4 0

Table 4.3 Number of steps necessary for convergence with y=1.

The values from table 4.3 perhaps will be better understood when they are put in a landscape

plot, where the height of the landscape on grid coordinate (x,y) is determined by the number of

steps for (xy) to converge. See figure 4.2.

Figure 4.2 Table 4.3 as a landscape.
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111111111111111111110
111111111211111111111
11111111111111111111
11111111111111111111
111111211111111111111
111111111111121111111
11111111111111111111
11111111111111111111
111111111121111111111
11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111
11111111111111111111

Table 4.4 Number of steps necessary tar convergence with r=1000 .

4.2.2 Clustering

For the experiments the following parameters are used. The neural network consists at 22

completely linked neurons. Each radar signal consists of two fields. Each experiment is done tour

times. First each field is thermometer coded with a thermometer wldth of 3 and both Hebbian and
delta learning is used, then each field is Gray coded and both Hebbian and delta learning is used.
Each field serves as input for 11 neurons (w=3, n=11 for each field). During recalling each

possible inputvector in the inputrange is generated and the stable outputvector belonging to these

inputvectors is drawn in a two-dimensional plot. For simplicity both x and y field values are

between 0 and 11 (so (0,0) corresponds with the upper left corner, (10,10) with the lower right

corner, Smax- 1 ,~ Smin=0 ). When delta learning is used, Icoef is chosen 0.05, and each pattern is
leared 5 times, after which randomly another pattern is learned 5 times. This is repeated until all

patterns have been learned.

4.2.2.1 One radar
The radar learned is at (1,1) 1. Look at figure 4.3 for the recall diagram. In this figure and in all

following figures the arrows in each gridpint (xy) point to the stable gridpoint (v,w) to which (x,y)

converges when formula 3 1 is applied recursively.

I Recall values will beatn(1.5, 1.5), see table 4.1.
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\ 1 7 .
TTI I , ?, ' '

1 1 I I/ \I / ' I

Figure 4.3 Recall diagram for one radar consisting of two fields, learned at (1,1) using

thermometer coding.

Points (.) in the plot represent vectors of which the recall vector equals the original vector. There

are two kinds of these vectors. First the radar point (1,1), which is learned to be an eigenvector,

and so Wx=., with =22. Because only one vector is learned, there will be 21 eigenvectors with

X=O (X=-O has multiplicity 21). This implies that there exists a 21 dimensional plane on which

vectors are lying with Wx-O. These vectors form the second group equilibrium points. The energy

of these vectors is E(x) = -(xTWx)/2 = -(xTO)/ 2 = 0. The diagram also shows another interesting

feature. Although no radar is learned at (7,7), a lot of arrows are pointing towards this point. Again

the explanation is simple. When Wx = Xx, then also W(-x) = -Wx = -Xx = X(-x), or when x is an

eigenvector then also -x is an eigenvector. We have learned the following vectors:

x =(i,1) 1 1 1 -1 -1 -1i-1 -1 -1 -1I-1 1 1 1 -1 - -1 - - - I - I ~)T
-x= (-1 -1-1 1 1 1 1 1 1 1 1 -1-1 -1 1 1 1 1 1 1 i)T

The radar corresponding to -x will be: (with formula 4.5)

rad = Smin+ (val+w/2) * (s max - smin) /n

= (3+(8/2)*11/11,3+(8/2)*11/11) (4.13)

= (7,7)

Also notice that the energy of eigenvector -x equals:

E(x) - -(xTwx)/2

E(-x) - -((-x)TW(-x))/2 (4.14)

- E(x)
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This leads to two remarks, concerning the fact that we dont want to reach equilibrium points

which are not a result of x (of learned prototypes). First, it is, for this example, easy to escape

from Wx=O points. Because Ex=0, these x points will be located at the top ot the energy

landscape, and when one element of x is changed so that E(x) * 0, x will converge to a learned x.

In fact this implements simulated annealing [P.J.M. Laarhoven, E.H.L. Aarts 19881 (x is given a

little push, so it rolls down from the top of the hill). For the second group of equilibrium vectors,

the obvious solution is to invert the vector when the recalled thermometer width is greater than

the expected thermometer width.

Greenberg [H.J. Greenberg 19881 has studied equilibria of the BSB neural model. One result is

that when W is strongly diagonal-dominant 2, each extreme point (endpoint of hypercube) is

stable. It can be proven that, when starting in the neighbourhood of each extreme point, BSB will

converge to the extreme point. The other result is that when W is strongly diagonal-dominant, and

x is a fixed point which is no extreme, then x is not stable. This occurs when Wx=0.

In figure 4.4 the recall field is shown when Gray coding is used. Each input vector is recalled

perfectly.

! 1 ', " 4', = ', 4 " - " - I-
/ N " ' ' ' , 1 , ,- "-

T T K_ 1 ',',

Ti
1' I _ _ _ ", " '.- "

~.7 I 4,. , 4, ' ' K ,

Figure 4.4 Recall diagram for one radar (1,1) consisting of two fields, using Gray coding.

2 W is strongly diagonal-dominant when each diagonal element is larger than the sum of
the rest of the elements of the row the diagonal element belongs to.
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4.2.2.2 Two radars

Two radars are learned, at (1,1) and (9,9). Look at figure 4.5 for the recall diagrams.

I I J ./I - - - - -

U 7 T '- .-. r~CTT7-*

Figure 4.5 Recall diagram for two radars (1,1), (9,9), using thermometer coding and Hebbian
learning (left) or delta learning (right).

As can be expected, the region, above the diagonal converges to (1,1) and the region below the

diagonal to (9,9). On the diagonal are equilibrium points. These extra points are (0,10), (1,9),

(5,5), (9,1) and (10,0), both when Hebbian and dela learning is used. In each of these points the

gradient vector has the direction: (This is only checked for Hebbian learning)

( 0 0 0 1 1 1 1 1 0 0 0 C 0 0 1 1 1 1 1 0 0 0 )T
.

The gradient has a zero component in Ihe direction of each prototype. This results in the vector:

(-1 -1 -1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1)T

or scalar (5.5 , 5.5).

See figure 4.6 for the recall field when translation is done with Gray coding. It appears that (1,9),

(6,6) and (9,1) are extra equilibrium points when Hebbian learning is used.
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I - 11 P. 11 ,

'l I 1-" ,- 1 1 -W -I -N i\ \1kM111N\N 11 J

Figure 4.6 Recall diagram for two radars (1,1), (9,9), using Gray coding and Hebbian
learning (left) or delta learning (right).

From table 4.2 it can be derived that for s=4, 5, 6 and 7 the corresponding vector has the same

Hamming distance to s=1 and s=9. When a field has one of these values, the output is s=6, which

has the minimal Hamming distance 1 to s=1 and s=9. When delta learning is used, the extra

equilibrium points have disappeared and are replaced by convergence to the radar (1,1).

4.2.2.3 3 radars

The third radar is placed at (8,8). Figure 4.7 shows that the diagonal has moved towards the

upper left comer both for Hebbian and delta learning. The gradient is: (checked only tor Hebbian

leaming)

(42 42 42 30 30 30 30 -6 -42 -42 -6 42 42 42 30 30 30 30 -6 -42 -42 -6)T

This gives rise to the vector

( 1 1 1 1 1 1 1 -1 -1 -1-l 1 1 1 1 1 1 1 -1 -1 -1 -1)
T

or (3.5 , 3.5).
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; 1"I' ' ' "2 . - " '
7

T .I. I I TT - -

Figure 4.7 Recall diagram for 3 radars (1,1), (9,9), (8,8), using thermometer coding and
Hebbian learning (left) or delta learning (right).

Figure 4.8 shows the recall diagram for Gray coding. Only one stable point (9,9) exists when

Hebbian learning is used. Inspection of the weight matrix (for one field):

3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
-1 3 -1 -1 3 3 3 3 3 3 3
-1 -1 3 3 -1 -1 -1 -1 -1 -1 -1
-1 -1 3 3 -1 -1 -1 -I - -1 -1
-1 3 -1 -1 3 3 3 3 3 3 3

w= - 1 3 -1-1 3 3 3 3 3 3 3
-1 3 -1 -1 3 3 3 3 3 3 3
-1 3 -1 -1 3 3 3 3 3 3 3
-1 3 -1 -1 3 3 3 3 3 3 3
-1 3 -1 -1 3 3 3 3 3 3 3
-1 3 -1 -1 3 3 3 3 3 3 3

So each Wx will have direction ( 1 -1 1 1 -1 -1 -1 -1 -1 -1 -1)T,orscalar9.
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SJ

T.. .I."." IT TI" "l. . " " T

Figure 4.8 Recall diagram for 3 radars (1,1), (9,9), (8,8), using Gray coding and Hebbian

learning (left) or delta learning (right).

4.2.2.4 4 radars

Figures 4.9 and 4.10 show recall fields when 4 radars are learned. These diagrams correspond

with the diagrams of 2 learned radars.

- 4-'--. -- 4,,.... 4

7T J, ,'T ", 'T _! ' i

Figure 4.9 Recall diagram for 4 radars (1,1), (1,9), (9,1), (9,9), using thermometer coding
and Hebblan learning (left) or delta learning (ight).
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I Jlll~l'' '' I / 1." Ai ±

Figure 4.10 Recall diagram for 4 radars (1,1), (1,9), (9,1), (9,9), using Gray coding and
Hebbian learning (left) or delta learning (right).

When Hebbian learning is used, extra stable equilibrium points are formed on each separation

line between two radars. With delta rule learning these extra points also converge to a learned

radar 3.

4.2.2.5 How many radars can be learned?

For the last experiment it is verified whether a network of n neurons can learn n-1 prototypes. The

network used consisted of 8 completely linked neurons for one field. Only delta rule learning is

used, and Gray coding. The following seven prototypes are learned: 12, 20, 45, 63, 128, 211 and

233. Lcoef is 0.05 and each pattern learned 7 times. The following weight matrix is formed:

7.6 -0.8 -0.0 1.2 0.0 0.4 0.8 -0.4
-0.8 6.4 -0.0 2.4 0.0 0.8 1.6 -0.8
-0.0 -0.0 8.0 -0.0 0.0 -0.0 0.0 -0.0

W = 1.2 2.4 -0.0 4.4 0.0 -1.2 -2.4 1.2
0.0 0.0 0.0 0.0 8.0 0.0 -0.0 0.0
0.4 0.8 -0.0 -1.2 0.0 7.6 -0.8 0.4
0.8 1.6 0.0 -2.4 -0.0 -0.8 6.4 0.8

-0.4 -0.8 -0.0 1.2 0.0 0.4 0.8 7.6

It can be verified that the seven prototypes are indeed eigenvectors of this matrix, with X=8 for

each vector.

3 To which prototypes they are converging deserves furlher attention, because the chosen
prototype appears to be not always a fair one.
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Now prototype number eight (with a value of 254) is added to the set, and the whole set is learned

again (starting with W-O). The weight matrix which is formed: W-81. So the system is not able to

form the nth eigenvector.

Looking again at the weight matrix formed by learning the seven prototypes, shows that it forms a

strongly diagonal-dominant matrix. This implies that each hypercube corner is stable. This has the

consequence that the BSB recall will not converge to one of the prototypes, but instead remain on

each stable hypercube corner.
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5 CONCLUSIONS AND FURTHER RESEARCH

The BSB neural network implements a first order gradient descent algorithm, capable of solving

nonlinear optimization problems such as radar pulse classification. A first step has been done

towards the implementation of radar pulse classification with a BSB network.

The experiments show that the BSB network is able to remove noise from signals, if the original

signals are learned in a separate learning phase. A network of n neurons can learn n-1 radars

effectively. Noisy input can be recalled by the BSB network to one of these n-1 radars, if the

weight matrix is not diagonal-dominant.

When there is no separate learning phase, learning and recalling can be combined. A number of

radar data samples is processed, after which the number of stable comers indicates the number

of different radars (clusters). Further research is required to study and implement this possibility.

The BSB neural network can also be used in other applications. TNO-FEL has studied and

implemented a Spatio-temporal Pattern Recognition (SPR) neural network to recognize garbled

text strings in messages [P.P. Meiler 1990]. This recognition can also be done using a BSB neural

network. Each character of the string is represented by a field using 5 bit Gray coding. This

approach may be more efficient than the SPR network because there is no time sequence

involved. However, the number of iterations required for the BSB network to converge to the

correct result is as yet unknown. A comparison may give interesting results.

P. va hout P.P. Meiler

(Groupleader) (Author)

A. van Wezenbeek

(Author)
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LINEAR ALGEBRA

1 Eigenvalues and eigenvectors

Eigenvalues and eigenvectors form one of the most important concepts of linear algebra. In this

section it is shown how a matrix A can be diagonalized, thus revealing its eigenvalues and

eigenvectors. The derivation comes from [G. Strang 1980].

Ax = )x, X eigenvalue, x eigenvector

AS = Als I  .. Sn1, S matrix of eigenvectors

= S nSn lI

iSln .. nSnn

XSl XSni

s12 Sn2 x X2  .. 0

Sin Snn 0 Xn
=SxA

ASS-
1 

= SAS-
1

A = SAS
- 1

We now look at the matrix of orthonormal eigenvectors 0

qT

QTQ = q2 x q, q2 " qnl

qnT

QTQ = I
Q-1 - QT
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A = QAQ T

XTAx = XTQAQTX

= yTAy (choose y =QTX)

0 2 0 Y2
= IYl Y2 "" Yn

i  
x

.. 0 Y'n

6*- X Y

= Xlyi
2 + 2 Y2

2
+ ..- +)nn

2

-> X.m Iy 12  
= X ,i Ix12  <_ xT _ ! XmaxIYl 2  = ax lx 2

A matrix A is called positive semi-definite when all eigenvalues are greater than or equal to zero,

So min 2! 0, or xTAx _ 0. When Xmin > 0, so xTAx > 0, A is called positive definite.

2 Linear operators

In this section a summary is given of elementary differential operators [H.W. Sorenson 1980].

The first order derivative of f (written as a row vector):

Sf 8f 8f T

8x x1  xn I

= Vf

The second order derivative of f, also called Hessian (or Hess), forming a (nxn) matrix:

8
2
f S 8f

j. 2  x - x

-- VfSx

The following derivatives are used:

S(cTx)

Sx

S(Ax)
- = A8x
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The chain rule:

af (u) 8f Su
Sx u Sx

As an example the chain rule can be used to find the derivative of f = xTAx:

f = xTAx

g(x,y) = xTy, y = Ax

bf 8g 8g 8y

8x 8x sy 8x

SyT + xTA

= XTAT + XTA

= XT(A + AT)

if A = AT, then Vf(x) = 2Ax.

Second order Taylor series approximation in the neighbourhood of x:

f(x+h) =f (x) +hTVf (x) + (hTHess (x) h) /2
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DOCUMENTATION OF C-SOURCES

1 Short description of each file

The name of each C file is an abbreviation of its function. This function operates on data. Data

has a certain format and a certain type.

The ASCII format represents readable numbers (integers or floats). Binary format represents

bytes.

Scalar type indicates that the data must be interpreted as single entities. Vector type indicates

that the data forms a sequence of vectors. Matrix type indicates that the data forms just one
matrix. To use the BSB network for garbled string recognition also String type can be chosen

When the function specifies a conversion, it converts input with a certain format and type to output

with a certain format and type. So a good mnemonic for a conversion file should give an indication

of the formats and types it expects for its in- and output. The first letter of characterizing format
and type is a good choic2 (A = ascii, B = binary, S = scalar, V = vector, M = matrix, S = string).

Unfortunately this gives rise to too long mnemonic names (at least 4 letters). Each name is limited

to 3 letters with the addition of the full name it actually stands for.

Finally for each file is given whether it contains a main program, and if so the name of the

executable it generates, or a routine. Common parameters for all programs (such as the number

of neurons) are read from one file BSB.PAR.

2D: main for 2D, creates a two dimensional plot consisting of a field of arrows, optionally it

also generates a memory dump (picture file) or invokes PRNT to generate a print file
2DpI: routine 2Dpl, does the real plot work

3D: main for 3D, creates a three dimensional plot, z-axis values forming the height of a x-y

plane, optionally it also generates a memory dump (picture file) or invokes PRNT to

generate a print file

ACB: routine (short for ASCBS, ASCII scalar convert to binary scalar), ASCII convert binary,

conversion of formats, noise generation is optional

ACM: routine (short for AMCBM, ASCII matrix convert to binary matrix), ASCII convert matrix,

conversion of formats

ACS: routine (short for ASCAS, ASCII scalar convert to ASCII string), ASCII convert string,

conversion of types



TNO report

Appendix B Page
B.2

ACV: routine (short or AVCBV, ASCII vector convert to binary vector), ASCII convert vector,

conversion of formats

ADD: main for ADD, adds two picture files to a sum file

ALLOC: routines tmalloc and tcalloc, tests whether space can be allocated and if so, it does, else

programs stops

BCA: routine (short for BSCAS, short for binary scalar convert to ASCII scalar), binary convert

ASCII, conversion of formats

Bev: routine (short for BSCBV, binary scalar convert to binary vector), binary convert vector,

conversion of types, either according to thermometer or Gray coding

EIG: routine, calculates eigenvalues and eigenvectors

ENG: routine, calculates energy

GRPH: routines SetCursorPos and ReadCursorPos

10: routines tfopen and tfopent, test whether files can be opened and if so, it does, else

program stops

ISO: routine, calculates isoclines, optionally it also creates a memory dump or invokes PRNT

to generate a print tile

LRN: routine, learns a file and returns a weight file

MACB: main for ACB

MACM: main for ACM

MACS: main for ACS

MACV: main for ACV

MBCA: main for BCA

MBCV: main for BCV

MCA: routine (short for MBCMA, matrix binary convert to matrix ASCII), matrix convert ASCII,

conversion of formats

MEIG: main for EIG

MENG: main for ENG

MISO: main for ISO

MJOb: main for JOB, a batch file for LRN and RCL

MLRN: main for LAN

MMCA; main for MCA

MPGN: main for PGN

MRCL: main for RCL

MSCA: main for SCA

MVCA: main for VCA

MVCB: main for VCB
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MVCW: main for VCW

MWCV: main for WCV

PGN: routine, find prototypes

PLT: routine, plots a picture tile

PRNT: routine, translates a plot to a print file

R2D: read parameters for 2D

R3D: read parameters for 3D

RACB: read parameters for ACB

RACM: read parameters for ACV

RBSB: read general BSB parameters

RCA: main for RCA, (short for RBSCAS, radar binary scalar convert to ASCII scalar), radar

convert ASCII, conversion of the format of radar file (generated by LOCK-ON simulator)

to ASCII scalar format

RCL: routine, recalls a file given a weigth file

RD: read common parameters for 2D, 3D and ISO

REIG: read parameters for EIG

RENG: read parameters for ENG

RFCP: read parameter RFCP (fraction connection parameter, I is fully connected, 0 is not

connected)

RISO: read parameters for ISO

RJOB: read parameters for JOB

RNRF: read parameter NRF

RSOU: read parameter source (whether ASCII or scalar, both for RCL and LRN)

RUTL: routine search, a read utility, searches in parameter file for a keyword, stops

immediately after keyword if found, else program stops

RVCW: read parameter for VCW

RWCV: read parameter for WCV

SCA: routine (short for ASCAS, ASCII string convert to ASCII scalar), string convert to ASCII,

conversion of types

TEST: main for TEST

UTIL: routines normalize, cmwv, mdcon, limit

VCA: routine (short for VBCVA, vector binary convert to vector ASCII), vector convert ASCII,

conversion of formats

VCB: routine (short for VBCSB, vector binary convert to scalar binary), vector convert binary,

conversion of types
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VCW: routine (short for VBCWB, vector binary convert to weight binary), vector convert weight,

generates the weight matrix
WCV: routine (short for WBCVB, weight binary convert to vector binary), weight convert vector,

given a weight matrix, it generates the BSB recall vector
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2 Structure o conversion executables

The mutual connection between the executables is given in figure B.i. In this figure datatiles are

surrounded by squares and next to each line the name of an executable is given.

ASCII

string

Fa c b bca

0k

bcv vcb

inary w binary I maJASCII

veto matrix matri

wcv acm

acv vca

Figure B. 1 Connections between the conversion programs.
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The Irn program invokes the following programs, depending on the value of LrnSource

(BSB.PAR). When LmSource = string: sca, acb, bcv, vcw, when LmSource = scalar: acb,

bcv,vcw, when LrnSource - vector: acv, vcw. So Im transforms an input file with a certain type to

a binary matrix or weight file. The rcl program invokes the following programs, depending on the

value of RclSource (BSB.PAR). When RclSource = string: sca, acb, bcv, wcv, vcb, bca, acs, when

RclSource = scalar: acb, bcv, wcv, vcb, bca, when RclSource = vector acv, wcv, vca. So rcl

transforms an input file with a certain type via a weight matrix to an output file with the same type

as the input file.
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